Friday, January 29, 2010

2: Data Link Layer
Main article: Data Link Layer
The Data Link Layer provides the functional and procedural means to transfer data between network entities and to detect and possibly correct errors that may occur in the Physical Layer. Originally, this layer was intended for point-to-point and point-to-multipoint media, characteristic of wide area media in the telephone system. Local area network architecture, which included broadcast-capable multiaccess media, was developed independently of the ISO work in IEEE Project 802. IEEE work assumed sublayering and management functions not required for WAN use
Layer 1: Physical Layer
Main article: Physical Layer
The Physical Layer defines the electrical and physical specifications for devices. In particular, it defines the relationship between a device and a physical medium. This includes the layout of pins, voltages, cable specifications, hubs, repeaters, network adapters, host bus adapters (HBAs used in storage area networks) and more.
Open System Interconnection (OSI) protocol suite is comprised of numerous standard protocols that are based on the OSI reference model. These protocols are part of an international program to develop data-networking protocols and other standards that facilitate multivendor equipment interoperability. The OSI program grew out of a need for international networking standards and is designed to facilitate communication between hardware and software systems despite differences in underlying architectures.

Thursday, January 28, 2010


Tree TopologyTree topologies integrate multiple star topologies together onto a bus. In its simplest form, only hub devices connect directly to the tree bus, and each hub functions as the "root" of a tree of devices. This bus/star hybrid approach supports future expandability of the network much better than a bus (limited in the number of devices due to the broadcast traffic it generates) or a star (limited by the number of hub connection points) alone.

Mesh TopologyMesh topologies involve the concept of routes. Unlike each of the previous topologies, messages sent on a mesh network can take any of several possible paths from source to destination. (Recall that even in a ring, although two cable paths exist, messages can only travel in one direction.) Some WANs, most notably the Internet, employ mesh routing.



Star TopologyMany home networks use the star topology. A star network features a central connection point called a "hub" that may be a hub, switch or router. Devices typically connect to the hub with Unshielded Twisted Pair (UTP) Ethernet.

Ring TopologyIn a ring network, every device has exactly two neighbors for communication purposes. All messages travel through a ring in the same direction (either "clockwise" or "counterclockwise"). A failure in any cable or device breaks the loop and can take down the entire network.

Wednesday, January 27, 2010


Bus TopologyBus networks (not to be confused with the system bus of a computer) use a common backbone to connect all devices. A single cable, the backbone functions as a shared communication medium that devices attach or tap into with an interface connector.
Network topology is the physical interconnections of the elements (links, nodes, etc.) of a computer network.[1][2] A local area network (LAN) is one example of a network that exhibits both a physical topology and a logical topology. Any given node in the LAN has one or more links to one or more other nodes in the network and the mapping of these links and nodes in a graph results in a geometrical shape that may be used to describe the physical topology of the network. Likewise, the mapping of the data flows between the nodes in the network determines the logical topology of the network. The physical and logical topologies may or may not be identical in any particular network.